Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deep learning based XIoT malware analysis: A comprehensive survey, taxonomy, and research challengesFree, publicly-accessible full text available October 1, 2026
-
Free, publicly-accessible full text available July 8, 2026
-
Free, publicly-accessible full text available December 15, 2025
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
This paper presents the findings of action research conducted to evaluate new modules created to teach learners how to apply machine learning (ML) and artificial intelligence (AI) techniques to malware data sets. The trend in the data suggest that learners with cybersecurity competencies may be better prepared to complete the AI/ML modules’ exercises than learners with AI/ML competencies. We describe the challenge of identifying prerequisites that could be used to determine learner readiness, report our findings, and conclude with the implications for instructional design and teaching practice.more » « less
An official website of the United States government
